作者:北京江汉科技有限公司教授级高级工程师 赵筠
1、超高性能混凝土(UHPC)定义与发展历程
超高性能混凝土(Ultra-HighPerformance Concrete,简称UHPC),因为一般需掺入钢纤维或高强聚合物纤维,也被称作超高性能纤维增强混凝土(Ultra-HighPerformance Fibre Reinforced Concrete,简称UHPFRC)。UHPC不同于传统的高强混凝土(HSC)和钢纤维混凝土(SFRC),也不是传统意义“高性能混凝土(HPC)”的高强化,而是性能指标明确的新品种水泥基结构工程材料。1999年清华大学覃维祖教授等发表文章《一种超高性能混凝土——活性粉末混凝土》最早介绍了UHPC[1],至今在中国仍然较多地使用“活性粉末混凝土(简称RPC)”名称。RPC是法国一个公司的专利产品名称,宣传介绍较多而广为人知。1994年法国学者DeLarrard等将这类新材料称作UHPC[2],由于UHPC或UHPFRC名称没有商业色彩,且能更好表达这种水泥基材料或混凝土的优越性能,逐步被广泛接受和采用。
UHPC较有代表性的定义或需要具备的特性如下[2,3]:
· 是一种组成材料颗粒的级配达到最佳的水泥基复合材料;
· 水胶比小于0.25,含有较高比例的微细短钢纤维增强材料;
· 抗压强度不低于150MPa;具有受拉状态的韧性,开裂后仍保持抗拉强度不低于5MPa(法国要求7MPa);
· 内部具有不连通孔结构,有很高抵抗气、液体浸入的能力,与传统混凝土和高性能混凝土(HPC)相比,耐久性可大幅度提高。
UHPC属于现代先进材料,创新了水泥基材料(混凝土或砂浆)与纤维、钢材(钢筋或高强预应力钢筋)的复合模式,大幅度提高了纤维和钢筋在混凝土中的强度利用效率,使水泥基结构材料的全面性能发生了跨越式进步。使用UHPC可以建造轻质高强和高韧性的结构,彻底改变混凝土结构“肥梁胖柱”状态;其结构所拥有的耐久性和工作寿命,远远超越钢、铝、塑料等其它所有结构材料。
UHPC在上世纪七十年代末起源于丹麦,八、九十年代在欧洲进行了比较系统深入的研究,并开始在小型工程和制品上应用。进入本世纪,在欧美、日韩等许多国家均将UHPC作为新型、未来的或战略性工程材料进行研究与发展,法国和日本率先制定了设计指南。目前,UHPC的配制、生产、施工和预制技术已经趋于成熟,结构性能与设计规范正处于发展完善过程,工程结构与制品的应用不断取得新进展,定期举办国际UHPC/UHPFRC研讨会进行学术交流。
2、UHPC的制备与增强、增韧原理
上世纪七十年代初的一些试验研究证实,提高水泥净浆的密实度,可以有效提高强度。丹麦学者H.H. Bache教授发展的DSP(Densified System with Ultra-Fine Particles)理论,即:用充分分散的超细颗粒(硅灰)填充在水泥颗粒堆积体系的空隙中,实现颗粒堆积致密化,见图1[4]。借助高效减水剂的分散作用,硅灰颗粒填充占据了水泥颗粒间的空隙即大量原本是水填充的空间,从而大幅度减小固体颗粒堆积的空隙率以及浆体的需水量,DSP体系可以使水胶比降低到0.10~0.20的超低水平。使用高强骨料,DSP基体混凝土的抗压强度可以达到280MPa,但脆性非常大;同时使用钢纤维增强增韧(即UHPC),抗压强度可达到400MPa(常温养护)。更进一步,法国使用高压成型和高温高压(压蒸)养护的活性粉末混凝土(RPC),最高抗压强度达到了800MPa。

图1 水泥净浆、超塑化水泥净浆和DSP体系的密实度示意图
高密实的DSP基体与钢纤维界面的密实度也非常高,界面粘结强度得以大幅度提高,使钢纤维在DSP基体中提高抗拉、抗弯、抗裂与增韧作用得到充分的发挥。用DSP理论配制超高强度混凝土,是混凝土技术的一个重大突破。同时期出现的MDF水泥(Macro Defect Free,宏观无缺陷水泥,用聚合物填充水泥浆孔隙和裂缝),SIFCON(Slurry Infiltrated Fibre Concrete,预填钢纤维灌注水泥细砂浆的混凝土),也可以获得很高的材料强度和韧性,但是前者需要辊压或挤压成型,后者难以使钢纤维形成三维堆积,在应用上受到很大制约,至今只能用于制作小型制品。DSP理论实现更高的密实度,只需要选择适宜优质原材料和进行配合比优化,不需要使用特殊的工艺方法,用传统搅拌设备和振动密实方法,就能生产与成型。因此,基于DSP理论配制的UHPC,较快地进入了实用阶段。
如今,已经能够配制自密实UHPC,预制产品与现场浇筑比较方便。虽然现在配制UHPC的技术途径和使用材料呈现多样化,但遵循的基本原则并没有改变,即颗粒组成与配合比要使密实度最大化。
3、UHPC的力学性能
单纯的超高抗压强度往往伴随着“超高脆性”,并不意味“超高性能”。UHPC的“超高力学性能”更主要体现在超高抗拉强度(单轴抗拉和弯曲抗拉强度)和高韧性,这依靠加入短纤维来实现。早期使用直径0.15~0.4mm、长度6~12mm的平直光圆钢纤维,可将UHPC的抗拉强度提高到30MPa,断裂能达到1,500~40,000 N/m(钢纤维体积含量2%~12%,详见表1[5]),使UHPC跨入韧性、高韧性材料的行列(断裂能超过1,000J/m2划分为韧性材料)。现在,使用异形,特别是扭转形高强钢纤维,可以进一步提高UHPC的抗拉强度、变形能力、韧性或断裂能。此外,高强高模的聚乙烯醇(PVA)纤维也用于UHPC的增强与增韧;聚乙烯(PP)纤维用于提高UHPC的耐火能力。
表1 高强混凝土、UHPC、钢筋增强UHPC和高强韧性钢材的性能对比
图2单轴拉伸和压缩UHPC的典型应力-应变特征与其它材料对比(OC/HSC-普通/高强混凝土,FRC/HSFRC-普通/高强纤维混凝土,ECC-高延性水泥基复合材料)
通过图2[6]可以直观对比UHPC与其它水泥基工程材料的典型力学性能特征。UHPC的抗压与抗拉强度大幅度超越其它水泥基材料。在变形能力方面,UHPC可以在相对低的纤维含量水平实现拉伸“应变硬化”行为,即单轴受拉经历弹性阶段,出现多微裂缝,纤维抗拉作用启动;随后拉应力上升,进入非弹性的应变硬化阶段(类似钢材的“屈服”);达到开裂后最大拉应力(抗拉强度),出现个别裂缝在局部扩展,之后拉应力下降,进入软化阶段。“应变硬化”是韧性材料的重要特征,体现短纤维增强增韧效果“质”的变化,目前只有ECC(高延性水泥基复合材料)和UHPC可以实现“应变硬化”。普通和高强纤维混凝土(FRC、HSFRC)开裂即软化,纤维强度未能有效发挥,故提高韧性的作用有限。
图3 UHPC梁、高强韧性钢梁与钢筋增强UHPC梁的抗弯性能对比
钢纤维增强增韧的UHPC,再与高强钢筋或钢绞线复合应用制作的梁(CRC或HRUHPC梁),抗弯承载能力接近钢梁的水平且抗弯行为相似(见图3[4]),可以实现更高的强度/质量比和刚度/质量比(详见表1)。结合预应力技术,UHPC还有更大潜力用于建造大跨度或轻质高强、高韧的结构,至今已经发展出多种桥梁结构。
4、UHPC的耐久性与可持续发展
UHPC最具吸引力的另一个性能是潜在的超高耐久性。根据理论和试验研究结果,基本上可以确定:UHPC没有冻融循环、碱-骨料反应(AAR)和延迟钙矾石生成(DEF)破坏的问题;在无裂缝状态,UHPC的抗碳化、抗氯离子侵入、抗硫酸盐侵蚀、抗化学腐蚀、耐磨等耐久性能指标,与传统高强高性能混凝土(HSC/HPC)相比,有数量级或倍数的提高。但UHPC不耐硝酸氨腐蚀,因为钢纤维会较快锈蚀。
UHPC具有非常好的微裂缝自愈能力。由于水胶比非常低,UHPC拌和水量仅能供部分水泥水化,绝大多数水泥颗粒的内部处于没有水化状态。因此,水或水汽进入UHPC的裂缝,暴露在裂缝表面的水泥颗粒未水化部分就会“继续”水化;结合了外界水分的水化产物体积大于水泥熟料体积,多出来的体积能够填堵裂缝,见图4[7]。试验和工程验证表明,UHPC的裂缝自愈不仅能够封闭微裂缝降低渗透性和保持良好耐久性,同时还起“胶结”裂缝作用,可在一定程度上恢复混凝土因裂缝降低的力学性能[7]。

图4 水泥熟料水化封闭了微裂缝
UHPC的耐久性能中,表面钢纤维的锈蚀一直令人关注。靠近表面的钢纤维保护层很小,还可能露出表面,在潮湿或腐蚀性环境(氯盐、酸性等环境),表面钢纤维有较快发生锈蚀的危险性。目前10~15年的试验和实际工程观察表明,只要钢纤维不露出表面,UHPC密实的基体能够非常有效地保护钢纤维不锈蚀,露出表面钢纤维的锈蚀没有扩展到内部,仅限于表面,但会影响表面美观。因此,对于有装饰功能的UHPC结构,需要采取措施防止钢纤维暴露或使用不锈蚀纤维。
与钢结构相比,UHPC结构的优势在于高耐久性和几乎没有维护费用,并容易达到建筑防火要求。与传统的钢筋混凝土结构相比,UHPC结构寿命可成倍提高。根据理论分析、现有的暴露试验以及实际工程检验结果,预期UHPC结构寿命,在腐蚀性自然环境中(如海洋环境)可以超过200年以上;在非腐蚀环境(如城市建筑)可以达到1000年。相对保守的日本指南认为,在正常使用环境条件下,UHPC结构的设计工作寿命为100年。耐久性中的碳化、钢纤维与钢筋锈蚀、冻融循环、硫酸盐侵蚀和碱-骨料反应属于免检项目,但重化学腐蚀和耐火性能是需要检验的项目。
使用B.L.Damineli[8]等提出的胶凝材料浓度指数bi(binderintensity )和碳浓度指数ci(CO2intensity )两个水泥应用的生态效率指标进行评定,UHPC属于最高效率使用胶凝材料或水泥的混凝土,同时也是最低碳的混凝土材料。通过具体工程结构的计算比较,可以量化分析UHPC的节材、节能和减排效果。例如,对比典型的钢梁-钢筋混凝土桥面板复合结构公路桥与UHPC门型梁的梁板一体公路桥(两个桥的材质与结构不同,长度、宽度和功能完全相同),定量分析表明:UHPC桥节材体积为24%,节材重量为35%;节能54%;减少直接排放CO2和全球变暖潜能GWP(当量CO2排放)分别达到59%和44%[9]。
5、UHPC的应用
纵观国际上UHPC的研究、发展与应用,领先的国家各具特色,简介如下:
· 丹麦的研究最有创新性,现在较多地应用在风电塔筒连接、轻巧美观的建筑结构上,如阳台、楼梯、幕墙、建筑保温体系等,见图5;
· 法国的研究规模大、参与单位多,向世界展示出UHPC的价值,引领在多方面应用的发展,如桥梁、建筑结构和幕墙、结构连接、长寿命路面等,其中拉法基的Ductal®产品在世界范围推广应用,见图6;
· 德国的研究从微观到宏观面面俱到,较快用于生产制造多种产品,如钻孔桩钻头、机床基座、建筑立柱等;
· 美国和加拿大的研究比较专注于桥梁和相关实用技术,发展了多种UHPC公路桥梁和桥面板体系,UHPC已开始越来越多地用于桥面板连接和快速建桥或桥梁维修;
· 瑞士的研究与应用在混凝土结构维修加固方面领先,用UHPC维修加固公路桥梁正在成为一种最佳方法而获得较多应用,见图7[10];
· 日本将UHPC作为“21世纪工程材料”看待,开展较全面研究与应用实践,实现了在东京羽田机场新海上跑道大型工程的应用;
· 韩国在桥梁方面研究和应用系统深入,在较短时间内形成比较完备的设计与生产施工应用技术文件(标准规范);
· 中国的应用主要是高速铁路的电缆沟盖板(RPC盖板)等方面。